Synthesis of an Analogue of Desamino-lysine-vasopressin Containing No Disulfide Bond

Shumpei SAKAKIBARA and Satoe HASE

Peptide Center, Institute for Protein Research, Osaka University, Kita-ku, Osaka

(Received August 19, 1968)

Jošt and Rudinger synthesized two analogues of desamino-oxytocin which have no disulfide bond, and they demonstrated for the first time that the disulfide bond in oxytocin is important as a structural element but is not necessary for biological activity.¹⁾ The present communication will report the synthesis of an analogue of desamino-lysine-vasopressin which has an ethylene linkage in place of the disulfide bond.

The following new compounds were synthesized as starting materials by conventional methods:*1 Z-Lys(Pht)-ONp, mp 99—100°C, $[\alpha]_D^{22}$ -16.0° (ϵ 4, DMF); bis-[Z-Asu(OBu $^{\epsilon}$)-OH] piperazine salt which was derived from Z-Asu-OH, 22 mp 130—131°C, $[\alpha]_D^{23}$ -2.7° (ϵ 2, AcOH); Z-Asn-OSu, mp 129—130°C, $[\alpha]_D^{24}$ -27.5° (ϵ 2, DMF); Aoc-Phe-OSu, 130—131°C, $[\alpha]_D^{13}$ -52.0° (ϵ 2, DMF); Aoc-Tyr(Bu $^{\epsilon}$)-OSu, mp 112—113°C, $[\alpha]_D^{33}$ -43.4° (ϵ 2, DMF).

The synthesis of the protected peptide was started from glycine amide by the step-by-step elongation method using the respective acylamino acid active esters. Carbobenzoxy (Z) groups were removed by catalytic hydrogenation. t-Amyloxycarbonyl (Aoc) groups were removed by treatment with trifluoroacetic acid. Thus, the following intermediates were synthesized: Z-Lys(Pht)-Gly-NH₂, mp 215—217°C, $[\alpha]_{D}^{22}$ -2.2° (c 2.1, DMF); Z-Pro-Lys(Pht)-Gly-NH₂, mp 173—175°C, $[\alpha]_D^{22}$ -36.4° (c 2.1, DMF); Z- $Asu(OBu^t)-Pro-Lys(Pht)-Gly-NH_2$, mp 112— 115°C, $[\alpha]_{\rm p}^{18}$ -37.5° (c 2, DMF); Z-Asn-Asu- (OBu^t) -Pro-Lys(Pht)-Gly-NH₂, mp 188--190°C, $[\alpha]_D^{19}$ -38.0° (c 2, DMF); Z-Gln-Asn-Asu- (OBu^t) -Pro-Lys(Pht)-Gly-NH₂, mp 189--191°C, $[\alpha]_{D}^{19}$ -36.9° (c 1.6, DMF); Aoc-Phe-Gln-Asn-Asu(OBu^t)-Pro-Lys(Pht)-Gly-NH₂, mp 188— 190°C (decomp.), $[\alpha]_{D}^{22}$ -35.4° (c 1.5, DMF); $Aoc-Tyr(Bu^t)-Phe-Gln-Asn-Asu-Pro-Lys(Pht)-$ Gly-NH₂ (I), mp 224—226°C (decomp.), $[\alpha]_{D}^{25}$

-41.9° (c 1, AcOH). Found: C, 59.08; H, 6.75; N, 12.76%. Calcd for C₆₆H₉₀O₁₇N₁₂·H₂O: C, 59.09; H, 6.91; N, 12.53%. The product, I, was converted to the p-nitrophenyl ester at the ω -position of the Asu-residue with p-nitrophenyl trifluoroacetate;³⁾ mp 217—220°C (decomp.), $[\alpha]_{\rm p}^{25}$ -29.2° (c 1, DMF). The Aoc and t-butyl ether groups were removed with trifluoroacetic acid, and the product was treated in pyridine at 50°C (1 mmol/l). Then, the phthalyl group was removed with hydrazine acetate in DMF. The final product was purified by column chromatography on CM-Sephadex C-25, and lyophilized; yield 22% (calcd from I). $[\alpha]_D^{27} - 80^\circ$ (c 0.44, 1 N AcOH). Found: C, 54.30; H, 6.85; N, 15.89%. Calcd for $C_{48}H_{68}O_{12}N_{12}\cdot 3H_2O$: C, 54.43; H, 7. 04; N, 15.87%. Amino acid analysis: Tyr_{0.98}, Phe_{1.05}, Glu_{0.96}, Asp_{1.00}, Asu_{1.00}, Pro_{1.06}, Lys_{1.03}, Gly_{0.97}. These analytical data support the following structure for this material:

Paper chromatography showed that this material was homogeneous: R_f 0.33 (n-BuOH: AcOH: $H_2O=4:1:1$), R_f 0.57 (Pyridine: AcOH: $H_2O=50:35:15$).

The material II showed distinct pressor and antidiuretic activities, as is shown in Table 1.

TABLE I. BIOLOGICAL ACTIVITY OF COMPOUND II

Compound	Pressor (Rat)	Antidiuretic (Rat)
II	10.4 U/mg	7.8 U/mg
Desamino-Lys- vasopressina)	126	301

a) R. D. Kimbrough, Jr., W. D. Cash, L. A. Branda, W. Y. Chan and V. du Vigneaud, J. Biol. Chem., 238, 1411 (1963).

Thus, it was shown that the disulfide bond in vasopressin was replaceable by a stable ethylene bridge without any essential loss of biological activity.

K. Jošt and J. Rudinger, Coll. Czech. Chem. Commun., 32 1229 (1967).

^{*1} The tentatively proposed rules by the IUPAC-IBC were followed in the use of abbreviations: J. Biol. Chem., 241, 2491 (1966). DMF=dimethylformamide. Asu=α-aminosuberic acid. -OSu=N-hydroxy-succinimide ester. The amino acids used were in the L-form.

²⁾ S. Hase, R. Kiyoi and S. Sakakibara, This Bulletin, 41, 1266 (1968).

S. Sakakibara and N. Inukai, ibid., 38, 1979 (1965).